Conversions of methane to synthesis gas over $\text{Co}/\gamma\text{-Al}_2\text{O}_3$ by CO_2 and/or O_2

H.Y. Wang and E. Ruckenstein*

Department of Chemical Engineering, State University of New York at Buffalo, Amherst, NY 14260, USA E-mail: feaeliru@acsu.buffalo.edu

Received 21 February 2001; accepted 23 May 2001

The goal of the paper was to investigate the effect of the catalyst precursor on the catalytic activity. For this reason, the structure, the reducibility and the reaction behavior of γ -Al₂O₃-supported Co (24 wt%) catalysts as a function of calcination temperature (T_c) were investigated using X-ray diffraction, temperature-programmed reduction, CO chemisorption, pulse reaction with pure CH₄, and the catalytic reactions of methane conversion to synthesis gas. Depending on T_c , one, two, or three of the following Co-containing compounds, Co₃O₄, Co₂AlO₄, and CoAl₂O₄, were identified. Their reducibility decreased in the sequence: Co₃O₄ > Co₂AlO₄ > CoAl₂O₄. Co₃O₄ was generated as a major phase at a T_c of 500 °C and Co₂AlO₄ and CoAl₂O₄ at a T_c of 1000 °C. The reduced Co/ γ -Al₂O₃ catalysts, obtained *via* the reduction of the 500 and 1000 °C calcined catalysts, provided high and stable activities for the partial oxidation of methane and the combined partial oxidation and CO₂ reforming of methane. They deactivated, however, rapidly in the CO₂ reforming of methane. Possible explanations for the stability are provided.

KEY WORDS: CO₂ reforming; partial oxidation; methane; synthesis gas; Co catalyst

1. Introduction

Owing to the increased demand for syngas (a mixture of H₂ and CO) for the syntheses of methanol and hydrocarbons, its preparation has received increased attention in recent years. Currently, the steam reforming of methane is the dominant commercial process. However, this process is highly endothermic and provides a synthesis gas with a too high H₂/CO ratio (>3) [1,2]. Recently, major efforts have been concentrated on the CO₂ reforming [3-12], the partial oxidation [13-24], and the combined partial oxidation and CO₂ reforming or H₂O reforming or both [25–27]. The CO₂ reforming provides a low H₂/CO ratio (around 1), which is suitable for the Fischer–Tropsch synthesis of higher hydrocarbons, and CO₂, a greenhouse gas, is thus consumed in a useful manner. The partial oxidation attracted attention due to its mild exothermicity and suitable H₂/CO ratio (around 2.0) obtained. The combined reactions also have a number of advantages. Firstly, by coupling the exothermic partial oxidation reaction with the endothermic reforming reaction, the methane-to-syngas conversion can be operated in a safer manner than the partial oxidation and in a more energy efficient manner than the reforming process. Secondly, by changing the feed composition, one can control the product ratio of H₂/CO and thus the selectivity to various Fischer–Tropsch synthesis products. Finally, one can conveniently use those natural gas reserves that contain substantial amounts of CO₂.

The conventional supported metal catalysts are usually prepared *via* the reduction of metal oxide precursors. In con-

trast, in a number of recent contributions, the metal was initially inserted in a well-defined structure, which was usually more difficult to reduce than the metal oxide. Rucontaining pyrochlores, such as Ln₂RuO₇ (Ln = Pr, Sm, Eu, Gd, *etc.*) [13], perovskites, such as LaMO₃ (M = Ni, Co, Rh) [17,20], spinels, such as MgRh₂O₄ [23], and solid solutions, such as NiO–MgO [7,11] and CoO–MgO [12,24] constitute such structures and have been used as precursors to obtain catalysts for the conversion of methane to syngas. In the present contribution, Co (Co₃O₄) and Co- and Alcontaining compounds (Co₂AlO₄ and CoAl₂O₄) were prepared by changing the calcination temperature and used as precursors of metallic Co. The catalytic reactions investigated include: (i) CO₂ reforming of methane, (ii) partial oxidation of methane, and (iii) the combination of (i) and (ii).

2. Experimental

2.1. Catalyst preparation

The γ -Al₂O₃-supported catalysts were prepared by impregnating γ -Al₂O₃ with aqueous solutions of Co(NO₃)₂·6H₂O, followed by overnight drying at 110 °C and calcination in the open air of a furnace for 8 h at various temperatures ranging from 500 to 1000 °C. The calcined catalysts will be denoted as Co(O)/ γ -Al₂O₃(T_c), the temperature inside the parentheses indicating the calcination temperature. The catalysts reduced in H₂ will be denoted as Co/ γ -Al₂O₃. Co loading means wt% Co in the completely reduced catalyst.

^{*} To whom correspondence should be addressed.

2.2. Catalytic reaction

All the catalysts were tested under atmospheric pressure in a fixed-bed vertical quartz reactor (ID 4 mm) operated in a down flow mode with the catalyst held on a quartz wool bed. Before reaction, the catalysts were reduced *in situ* in a H₂ flow (30 ml/min) by increasing the temperature from room temperature to 600 °C at a rate of 20 °C/min and from 600 to 900 °C at a rate of 10 °C/min, without holding at 900 °C. After reduction, feed gases with a C/O atomic ratio of 1 were allowed to flow through the catalyst bed. The reactants and products were analyzed with an on-line gas chromatograph equipped with a Porapak Q column. An ice-cold trap was set between the reactor exit and the GC sampling valve to remove the water formed during reaction. The yields to H₂ and CO are defined as

$$\begin{split} &H_2 \text{ yield (\%)} = \frac{H_2}{2\text{CH}_{4,\text{in}}} \times 100, \\ &\text{CO yield (\%)} = \frac{\text{CO}}{\text{CH}_{4,\text{in}} + \text{CO}_{2,\text{in}}} \times 100, \end{split}$$

where H₂ and CO represent the moles of H₂ and CO produced per unit time, and CH_{4,in} and CO_{2,in} the moles introduced per unit time.

The blank tests, carried out with CO_2/CH_4 (1/1), CH_4/O_2 (2/1) and $CH_4/CO_2/O_2$ (4/2/1) in a reactor free of catalyst, indicated that the yields to CO and H_2 were negligible.

2.3. Catalyst characterization

The BET surface area of the calcined catalysts and the exposed Co surface area of the reduced catalysts were determined as in our previous paper [12]. The CH₄ decomposition, the temperature-programmed reduction (TPR), and the X-ray diffraction (XRD) were carried out as described previously [12].

3. Results

3.1. Catalytic reactions with mixtures of CH_4 , CO_2 and O_2 of different compositions

The reduced $\text{Co}/\gamma\text{-Al}_2\text{O}_3$ catalysts, obtained *via* the reduction of $\text{Co}(\text{O})/\gamma\text{-Al}_2\text{O}_3(500\,^{\circ}\text{C})$ or $\text{Co}(\text{O})/\gamma\text{-Al}_2\text{O}_3(1000\,^{\circ}\text{C})$, were used to catalyze the conversion of methane to synthesis gas. As shown in table 1, both $\text{Co}/\gamma\text{-Al}_2\text{O}_3$ catalysts provided initially high activities for the three reactions investigated, the synthesis gas yield being higher than 90%. The molar ratio of H_2/CO produced was about 1.1 in the CO_2 reforming, about 2.0 in the partial oxidation, and about 1.4 in the combined reaction.

The time-dependent activities of the Co/γ -Al₂O₃ catalysts are plotted in figures 1-3. In the CO₂ reforming of methane, both catalysts deactivated rapidly as indicated by the rapid decreases both in the conversions of CH₄ and CO₂ and in the flow rate of the exit gas with time on stream (figure 1 (a) and (b)). After 8 h of reaction, both catalysts were coated with notable amounts of coke, as indicated by their increased volumes. In the partial oxidation reaction, over both catalysts, no significant decreases in CH₄ conversion and CO (H₂ as well) selectivity were noted over 118 h on stream (figure 2). The two catalysts provided comparable activities during the entire period of study. In the combined partial oxidation and CO₂ reforming of methane, after an activation period, the CH₄ (CO₂ as well) conversion and CO (H₂ as well) yield remained high and unchanged during the period of study of 125 h over both catalysts (figure 3). The effect of O2/CO2 ratio (while maintaining a total flow rate of 35 ml/min and a C/O atomic ratio of 1) on the CO yield and H₂/CO ratio in the combined reaction was investigated over the Co/γ -Al₂O₃(1000 °C). The results are presented in figure 4. The CO yield remained almost the same, while the H₂/CO ratio increased from 1.40 to 1.85 with increasing O₂/CO₂ ratio from 0.5 to 4.0. The combined reaction can provide a H₂/CO ratio between 1 and 2, the stoichiometric values corresponding to the CO₂ reforming of methane and partial oxidation of methane, respectively. While in the partial oxidation of methane, bright hot spots were always observed on the surface of the catalyst [28,29] (they were

Table 1 Effect of calcination temperature (T_c) on the initial activity of the 24 wt% Co/γ -Al₂O₃ in catalytic reactions of mixtures of CH_4 , CO_2 , and O_2 .

Feed composition (%)			$T_{\rm r}^{\rm b}$	sv ^c	$T_{\rm c}$	CH ₄ conversion	H ₂ yield	CO yield	H ₂ /CO
CH ₄	CO ₂	O ₂	(°C)	(ml/g h)	(°C)	(%)	(%)	(%)	ratio
50.0	50.0	0.0	900	60 000	500	95.6	96.0	96.4	1.14
					1000	95.0	95.4	96.2	1.15
57.1	28.6	14.3	900	105 000	500	92.8	92.0	92.1	1.42
					1000	91.0	89.6	90.6	1.36
66.6	0.0	33.4	850	360 000	500	95.0	93.6	92.9	2.02
					1000	95.0	92.3	92.8	1.99

^a Data obtained after 10 min on stream.

^b Reaction temperature.

^c Space velocity.



Figure 1. Time-dependent conversions of CH₄ and CO₂ (a) and the flow rate of exit gas (b) as a function of time on stream in CO₂ reforming of methane over the 24 wt% Co/γ -Al₂O₃(T_c) catalysts. P=1 atm, $T=900\,^{\circ}\text{C}$, amount of catalyst = 20.0 mg, CH₄/CO₂ = 1/1, space velocity = 60 000 ml/h g.

Time on stream, h

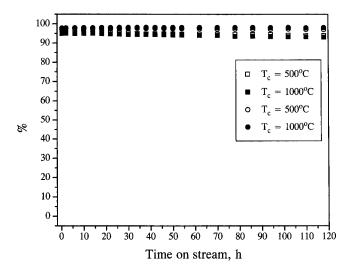


Figure 2. Time-dependent CH₄ conversion (\square , \blacksquare) and CO selectivity (\circ , \bullet) in partial oxidation of methane over the 24 wt% Co/ γ -Al₂O₃(T_c) catalysts. P=1 atm, $T=850\,^{\circ}$ C, amount of catalyst = 10.0 mg, CH₄/O₂ = 2/1, space velocity = 360 000 ml/h g.

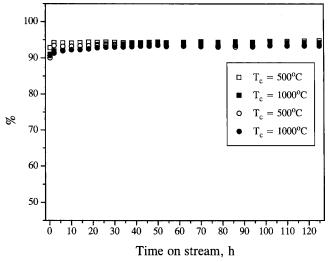


Figure 3. Time-dependent CH_4 conversion (\square , \blacksquare) and CO yield (\circ , \bullet) in combined partial oxidation and CO_2 reforming of methane over the 24 wt% Co/γ -Al₂O₃(T_c) catalysts. P=1 atm, $T=900\,^{\circ}$ C, amount of catalyst = 20.0 mg, $CH_4/CO_2/O_2=4/2/1$, space velocity = $105\,000$ ml/h g.

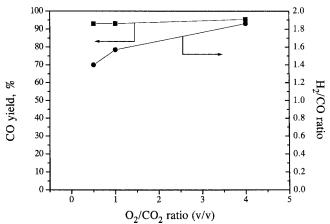


Figure 4. CO yield and $\rm H_2/CO$ ratio as a function of $\rm O_2/CO_2$ in combined reaction over the 24 wt% $\rm Co/\gamma$ -Al $_2\rm O_3(1000\,^{\circ}\rm C)$ (data obtained after 30 h of reaction). P=1 atm, $T=900\,^{\circ}\rm C$, amount of catalyst =20.0 mg, $\rm CH_4/(CO_2+2O_2)=1/1$, space velocity $=105\,000$ ml/h g.

visually observed in the present work as well), in the combined reaction less bright hot spots could be noted visually for the molar feed ratios $CH_4/CO_2/O_2 = 3/1/1$ and 9/1/4 but not for 4/2/1.

3.2. Physico-chemical characterization

3.2.1. BET surface area of the calcined catalysts and exposed metallic Co surface area of the reduced catalysts

The BET surface area and the exposed Co surface area were determined before and after reduction, respectively. As shown in table 2, both the BET surface area and the exposed metal surface area were much higher for $T_{\rm c}=500\,^{\circ}{\rm C}$ than for $T_{\rm c}=1000\,^{\circ}{\rm C}$.

T _c (°C)	BET surf. area ^a (m ² /g)	Co surf. area ^b (m ² /g-cat.) ×100
500	51	213
1000	23	65

^a For the calcined catalysts.

^b For the reduced catalysts.

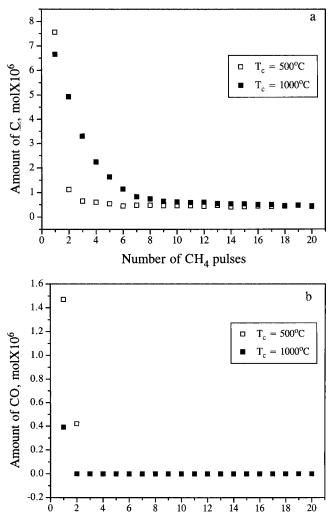


Figure 5. Amount of carbon ($\underline{\mathbb{C}}$) (a) and CO (b) formed during CH₄ decomposition as a function of number of CH₄ pulses over the 24 wt% Co/γ -Al₂O₃(T_{C}) catalysts at 900 °C.

Number of CH₄ pulses

3.2.2. Surface carbon formed during the CH₄ decomposition

The decomposition of CH₄ pulses over the reduced catalysts was carried out at 900 °C and the amount of surface carbon (\underline{C}) generated was determined from the carbon balance. Figure 5 plots the amounts of \underline{C} and CO formed during each pulse as a function of the number of CH₄ pulses. The amount of \underline{C} generated during the first pulse was somewhat higher for $T_c = 500$ °C than for $T_c = 1000$ °C; it was, however, much lower for the former in the following five pulses (figure 5(a)). CO was detected during the first one or two pulses and its amount was about four times larger for $T_c = 1000$ °C (figure 5(b)). As shown in table 3, with the exception of the first pulse, the accumulated amount of \underline{C} during the same period was higher for $T_c = 1000$ °C than for $T_c = 500$ °C.

3.2.3. Compounds present in the calcined catalysts

The species present in the calcined catalysts were identified by XRD and TPR. Figure 6 presents the XRD patterns for the $800\,^{\circ}\text{C}$ calcined catalyst. Some of the peaks can be attributed to Al_2O_3 , while all the other peaks to any of the compounds Co_3O_4 , Co_2AlO_4 , and CoAl_2O_4 . It is, therefore, difficult to identify by XRD the Co-containing phases. The above three compounds have a spinel structure with the interactions increasing in strength as the mumber of Al^{3+} ions in the surrounding of the Co ion increases [30]. Consequently, the reducibility should decrease in the sequence: $\text{Co}_3\text{O}_4 > \text{Co}_2\text{AlO}_4 > \text{CoAl}_2\text{O}_4$. TPR experiments were carried out to help to identify the species present. Fig-

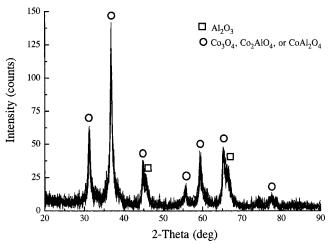


Figure 6. XRD pattern of the 24 wt% $Co(O)/\gamma$ -Al₂O₃(800 °C).

Table 3 Amount of carbon deposited during CH_4 decomposition over the reduced supported Co (24 wt% loading) catalysts at 900 $^{\circ}C$.

Catalyst		C formed during various numbers of CH ₄ pulses (µmol)					
	1st pulse	1st 3 pulses	1st 5 pulses	1st 10 pulses	1st 20 pulses		
Co/γ-Al ₂ O ₃ (500 °C)	7.6	9.3	10.5	12.8	17.2		
$\text{Co/}\gamma\text{-Al}_2\text{O}_3(1000^{\circ}\text{C})$	6.7	14.9	18.8	22.7	27.9		
Co/MgO(800 °C)	1.7	4.1	5.3	7.7	11.9		

ure 7 provides the TPR patterns of the catalysts calcined at various temperatures as well as those of the mixture of $Co_3O_4/CoAl_2O_4$, and table 4 lists the peak temperatures T_m . For the mixture of Co₃O₄/CoAl₂O₄, two peaks were observed: one at about 340 °C, which can be attributed to the reduction of Co₃O₄, and the other at about 940 °C, which is due to the reduction of CoAl₂O₄. The TPR peaks observed over the calcined $Co(O)/\gamma$ -Al₂O₃ catalysts can be divided into three regions: region I (<500 °C), region II $(500-900 \,^{\circ}\text{C})$, and region III (>900 $^{\circ}\text{C}$). For the Co(O)/ γ -Al₂O₃(500 °C), only a peak in region I was noted. For the $Co(O)/\gamma$ -Al₂O₃(700 °C), two peaks, one in region I and another in region II, were identified. For the $Co(O)/\gamma$ - $Al_2O_3(800 \,^{\circ}C)$ and $Co(O)/\gamma - Al_2O_3(900 \,^{\circ}C)$, three peaks, one in each of the regions, were noted. Finally, for the $Co(O)/\gamma$ -Al₂O₃(1000 °C), two peaks, one in region II and the other in region III, were observed. According to the reducibility sequence of the three compounds, the TPR peak in region I can be attributed to Co₃O₄, that in region II to Co₂AlO₄, and that in region III to CoAl₂O₄. Consequently, Co₃O₄ was identified as the major phase in the 500 °C calcined catalyst, Co₃O₄ and Co₂AlO₄ in the 700 °C, Co₃O₄, Co₂AlO₄ and CoAl₂O₄ in the 800 and 900 °C, and Co₂AlO₄ and CoAl₂O₄ in the 1000 °C calcined catalysts. With increasing calcination temperature, a positive shift in the TPR peak in each of the regions was noted, indicating an increasing strength of the interaction between the species and support.

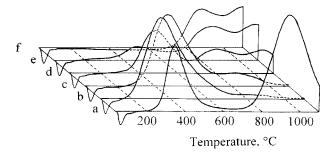


Figure 7. TPR profiles of the mixture of $Co_3O_4/CoAl_2O_4$ (a) and the 24 wt% $Co(O)/\gamma$ -Al₂O₃ catalysts calcined at 500 (b), 700 (c), 800 (d), 900 (e), and 1000 °C (f).

 $\label{eq:Table 4} Table 4 \\ Temperature-programmed reduction of the mixture of $Co_3O_4/CoAl_2O_4$ and of the calcined 24 wt% $Co(O)/Al_2O_3$ catalysts.}$

Sample	$T_{\rm c}{}^{\rm a}$	T _m ^b (°C)			
	(°C)	Region I	Region II	Region III	
Co ₃ O ₄ /CoAl ₂ O ₄	_	340	_	940	
Co(O)/Al ₂ O ₃	500	350	_	_	
	700	460	830	_	
	800	485	810	1045	
	900	480	860	>1000	
	1000	_	880	>1000	

^a Calcination temperature.

4. Discussion

4.1. Effect of calcination temperature on the species formed and the reducibility of the calcined catalysts

The impregnation of γ -Al₂O₃ with an aqueous cobalt nitrate solution followed by drying at 110 °C led initially to the formation of Co₃O₄ on the surface of the support [31–33]. Co_3O_4 has the composition $Co^{2+}(Co_2^{3+})O_4$, with Co^{2+} ions located in the tetrahedrally coordinated sites and Co3+ ions in the octahedrally coordinated sites. The calcination led to the decomposition of Co₃O₄ and the ion exchange between Co₃O₄ and Al₂O₃. While the tetrahedral sites remained occupied by Co²⁺, the Co³⁺ were substituted by Al³⁺, thus leading to the formation of Co₂AlO₄ and CoAl₂O₄. The incorporation of Co²⁺ into the tetrahedral sites of the support can also generate CoAl₂O₄. These structures were formed because γ -Al₂O₃ has the structure of a spinel with a deficit of cations [34]. A simultaneous decrease of the intensity of the peak in region I and increase of those in regions II and III could be observed with increasing T_c from 500 to 1000 °C (figure 7), indicating that Co₃O₄ was converted to the other two phases. Co₃O₄ remained as the major phase at $T_c = 500$ °C, while the entire Co₃O₄ was converted to Co_2AlO_4 and $CoAl_2O_4$ at $T_c = 1000$ °C.

The exposed metal surface area of the $\text{Co}/\gamma\text{-}\text{Al}_2\text{O}_3$ (1000 °C) was much lower than that of the $\text{Co}/\gamma\text{-}\text{Al}_2\text{O}_3$ (500 °C) (table 2) because the species formed in the former case during calcination (Co_2AlO_4 and CoAl_2O_4) are less reducible than that formed in the latter (Co_3O_4).

4.2. Catalytic conversion of methane to synthesis gas

4.2.1. Effect of O₂ addition

Both $\text{Co}/\gamma - \text{Al}_2\text{O}_3(500\,^\circ\text{C})$ and $\text{Co}/\gamma - \text{Al}_2\text{O}_3(1000\,^\circ\text{C})$ provided high and stable activities for the partial oxidation of methane and for the combined partial oxidation and CO₂ reforming of methane, but an unstable activity for the CO₂ reforming of methane (figures 1–3). The carbon deposition and the metal sintering are the main causes for catalyst deactivation in the methane conversion reactions, which are usually carried out at high temperatures (>800 °C). Sintering decreases not only the number of active sites, but also stimulates the carbon deposition, because large metal ensembles favor coke formation [35]. When O₂ was present in the feed, less carbon was formed on the catalyst than during the CO2 reforming. This is similar to the observation that an excess of CO₂ in the feed stream suppressed carbon formation in the CO₂ reforming of methane [5,36]. Moreover, in all three methane conversion reactions, the atmosphere in the reactor was both reductive and oxidative, due to the coexistence of reductive (CH₄, H₂ and CO) and oxidative (CO₂ and/or O₂, and H₂O) species. While the reductive atmosphere stimulated metal sintering, the oxidative atmosphere favored its redispersion [37]. These two opposite effects may cancel out each other. A steady state can be achieved more easily in the partial oxidation and the combined reaction than in the CO₂ reforming due to the presence of O₂ in the former two reactions. For these reasons, the Co/γ -Al₂O₃ catalysts exhibited

 $[^]b$ $T_m=$ peak temperature; region I (<500 °C), region II (500–900 °C), and region III (>900 °C).

high and stable activities for the partial oxidation of methane and the combined reaction.

4.2.2. Effect of calcination temperature (T_c)

The starting idea of the present paper was to generate different species by varying the calcination temperature in order to control the reducibility of catalyst and its catalytic performance. The higher the reducibility, the larger the size of metal particles was expected to be. Since large metal ensembles stimulate coke formation, Co/γ-Al₂O₃(1000 °C) was expected to generate less carbon in the decomposition of pure CH₄ than Co/γ -Al₂O₃(500 °C). However, as shown in table 3, with the exception of the first pulse, the accumulated amount of C during the same period was higher for $T_c = 1000$ °C than for $T_c = 500$ °C. The higher accumulation of C during the first pulse for $T_c = 500$ °C was caused by the larger number of metallic sites present. The change in behavior for the latter several pulses was due to the generation of new accessible metallic sites via the reduction of Co₂AlO₄ and CoAl₂O₄ by CH₄ (as indicated by the formation of a notable amount of CO (figure 5(b))) in the 1000 °C calcined catalyst. As shown in table 3, compared to the 24 wt% Co/MgO(800 °C), which provided a high and stable activity for the CO₂ reforming of methane [38], both the 24 wt% Co/γ -Al₂O₃(500 °C) and the 24 wt% Co/γ -Al₂O₃(1000 °C) exhibited much higher carbon depositions. For this reason, severe deactivation occurred over both catalysts (figure 1).

For the partial oxidation of methane, both $\text{Co}/\gamma\text{-Al}_2\text{O}_3$ (500 °C) and $\text{Co}/\gamma\text{-Al}_2\text{O}_3$ (1000 °C) provided comparable activities with time on stream (figure 2). The almost equal methane conversions occurred most likely because under the conditions employed the number of metallic sites was sufficiently large for thermodynamic equilibrium to be achieved in both cases [24].

In the combined partial oxidation and CO_2 reforming of methane, Co/γ - $Al_2O_3(1000\,^{\circ}C)$ provided a somewhat lower initial activity than Co/γ - $Al_2O_3(500\,^{\circ}C)$ (figure 3). This reflected the trend of the exposed Co surface area (table 2), revealing that the metallic sites were the active sites for the synthesis gas formation. The activation period observed over Co/γ - $Al_2O_3(1000\,^{\circ}C)$ indicated that additional metallic sites were generated during reaction via the reduction of Co_2AlO_4 and $CoAl_2O_4$ by CH_4 and/or H_2 . Both catalysts exhibited comparable activities after 30 h on stream; this occurred most likely because thermodynamic equilibrium was achieved in both cases. Compared to the partial oxidation, less bright or no hot spots were visually observed. Consequently, the combined reaction can be operated in a safer manner than the partial oxidation.

5. Conclusions

The structural characteristics of the γ -Al₂O₃-supported Co (24 wt%) catalysts were strongly affected by the calcination temperature (T_c), and so was their reducibility. Co₃O₄ was generated as a major phase at a T_c of 500 °C and Co₂AlO₄ and CoAl₂O₄ at a T_c of 1000 °C. The re-

ducibility of the γ -Al₂O₃-supported Co catalysts decreased with increasing T_c because of the formation of the less reducible Co₂AlO₄ and CoAl₂O₄. No significant effect of T_c on the catalytic performance was, however, observed. Both the 24 wt% Co/ γ -Al₂O₃(500 °C) and the 24 wt% Co/ γ -Al₂O₃(1000 °C) provided high and stable activities for the partial oxidation of methane and the combined partial oxidation and CO₂ reforming of methane, but an unstable activity for the CO₂ reforming of methane.

References

- [1] J.R. Rostrup-Nielsen, Catal. Today 18 (1993) 305.
- [2] J.M. Fox, III, Catal. Rev. Sci. Eng. 35 (1993) 169.
- [3] A.M. Gadalla and B. Bower, Chem. Eng. Sci. 43 (1988) 3049.
- [4] J.T. Richardson and S.A. Paripatyadar, Appl. Catal. 61 (1990) 293.
- [5] A.T. Ashcroft, A.K. Cheetham, M.L.H. Green and P.D.F. Vernon, Nature 352 (1991) 225.
- [6] J.R. Rostrup-Nielsen and J.-H.B. Hansen, J. Catal. 144 (1993) 38.
- [7] E. Ruckenstein and Y.H. Hu, Appl. Catal. A 133 (1995) 149.
- [8] V.C.H. Kroll, H.M. Swaan and C. Mirodatos, J. Catal. 161 (1996) 409.
- [9] R.N. Bhat and W.M.H. Sachtler, Appl. Catal. A 150 (1997) 279.
- [10] S.M. Stagg, E. Romeo, C. Padro and D.E. Resasco, J. Catal. 178 (1998) 137.
- [11] K. Tomishige, Y. Chen and K. Fujimoto, J. Catal. 181 (1999) 91.
- [12] E. Ruckenstein and H.Y. Wang, Appl. Catal. A 204 (2000) 257.
- [13] A.T. Ashcroft, A.K. Cheetham, J.S. Foord *et al.*, Nature 344 (1990)
- [14] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas and L.H. Lunsford, J. Catal. 132 (1991) 117.
- [15] D.A. Hickman and L.D. Schmidt, J. Catal. 138 (1992) 267.
- [16] D.A. Hickman and L.D. Schmidt, Science 259 (1993) 343.
- [17] A. Slagtern and U. Olsbye, Appl. Catal. A 110 (1994) 99.
- [18] V.R. Choudhary, B.S. Uphade and A.S. Mamman, Catal. Lett. 32 (1995) 387.
- [19] A. Santos, M. Menéndez, A. Monzón et al., J. Catal. 158 (1996) 83.
- [20] R. Lago, G. Bini, M.A. Pena and J.L.G. Fierro, J. Catal. 167 (1997) 108
- [21] V.A. Tsipouriari, Z. Zhang and X.E.J. Verykios, J. Catal. 179 (1998) 283.
- [22] E. Ruckenstein and Y.H. Hu, Appl. Catal. A 183 (1999) 85.
- [23] H.Y. Wang and E. Ruckenstein, J. Catal. 186 (1999) 181.
- [24] H.Y. Wang and E. Ruckenstein, J. Catal. 199 (2001) 309.
- [25] V.R. Choudhary, B.S. Uphade and A.A. Belhekar, J. Catal. 163 (1996) 312.
- [26] A.M. O'Connor and J.R.H. Ross, Catal. Today 46 (1998) 203.
- $[27]\;\;E.\;Ruckenstein$ and Y.H. Hu, Ind. Eng. Chem. Res. 37~(1998)~1744.
- [28] D. Dissanayake, M.P. Rosynek and J.H. Lunsford, J. Phys. Chem. 97 (1993) 3644.
- [29] Y.F. Chang and H. Heinemann, Catal. Lett. 21 (1993) 215.
- [30] P. Arnoldy and J.A. Moulijn, J. Catal. 93 (1985) 38.
- [31] K.S. Chung and F.E. Massoth, J. Catal. 64 (1980) 320.
- [32] M. LoJacono, J.L. Verbeck and G.C.A. Schuitt, J. Catal. 29 (1973) 463.
- [33] R.L. Chin and D.M. Hercules, J. Phys. Chem. 86 (1982) 360.
- [34] J.T. Richardson and L.W. Vernon, J. Phys. Chem. 62 (1958) 1153.
- [35] J.R. Rostrup-Nielsen, in: Catalysis Science and Technology, Vol. 5 eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1984) pp. 1– 118.
- [36] S. Teuner, Hydrocarbon Process. 64 (1985) 106.
- [37] E. Ruckenstein, in: Metal-Support Interactions in Catalysis, Sintering, and Redispersion, eds. S.A. Stevenson, J.A. Dumesic, R.T.K. Baker and E. Ruckenstein (Van Nostrand Reinhold, New York, 1987) p. 297.
- [38] H.Y. Wang and E. Ruckenstein, Appl. Catal. A 209 (2001) 207.